NODEs
Owen Fuller

Introduction

Numerical Methods

Eulers Method:

$$
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)
$$

Convergence of Euler's Method

$$
\begin{gathered}
\left|\frac{\partial f}{\partial y}\right| \leq L \\
L \leq \max _{(t, y) \in R}\left|\frac{\partial f}{\partial y}\right| \\
\left|y^{\prime \prime}(t)\right| \leq M, \quad a \leq t \leq b \\
D=e^{(b-a) L} \frac{M}{2 L}
\end{gathered}
$$

and with $e_{n}=y_{n}-y\left(t_{n}\right)$ we have the global error is bounded by $D h$ in magnitude: $\left|e_{n}\right| \leq D h$,for $n=0,1, \ldots, N$.

The Flow Map

Flow Map: fixing t_{0} and h we may consider the map from y_{0} to $y\left(t_{0}+h ; t_{o}, y_{0}\right)$. This is the flow map, written:

$$
y\left(t_{0}+h ; t_{0}, y_{0}\right)=\Phi_{t_{0}, h}\left(y_{0}\right)
$$

Which is actually a family of maps.
Flow Map Approximation: can be viewing of the form:

$$
\hat{\Phi}_{t, h}(y)=y+h f(t, y)
$$

Methods which approximate the solution through iteration of an approximate flow map are called one-step methods

Taylor Series Methods

$$
\begin{gathered}
y^{\prime}=f(t, y) \\
y^{\prime \prime}=f_{y} y^{\prime}+f_{t}=f_{y} f+f_{t}
\end{gathered}
$$

Thus
$\Phi_{t, h}(y)=y+h f(t, y)+\frac{1}{2} h^{2}\left(f_{y}(t, y) f(t, y)+f_{t}(t, y)\right)+\frac{1}{6} y^{\prime \prime \prime} h^{3}+\ldots$

Convergence of One-Step Methods

Polynomial Interpolation

The Lagrange interpolating polynomials $\ell_{i}, i=1, \ldots, s$ for a set of abscissae are defined by:

$$
\ell_{i}(x)=\prod_{\substack{j=1 \\ j \neq i}}^{s} \frac{x-c_{j}}{c_{i}-c_{j}}
$$

Defining the weights:

$$
b_{i}=\int_{0}^{1} \ell_{i}(x) \mathrm{d} x
$$

The quadrature formula becomes:

$$
\int_{0}^{1} g(x) \mathrm{d} x \approx \int_{0}^{1} P(x) \mathrm{d} x=\sum_{i=1}^{s} b_{i} g\left(c_{i}\right)
$$

Runge-Kutta Methods

$$
\begin{gathered}
Y_{i}=y_{n}+h \sum_{j=1}^{s} a_{i j} f\left(Y_{j}\right), \quad i=1, \ldots, s \\
y_{n+1}=y_{n}+h \sum_{i=1}^{s} b_{i} f\left(Y_{i}\right)
\end{gathered}
$$

Here, s is the number of stages of the RK method, b_{i} are the weights and $a_{i j}$ are the internal coefficients.
Butcher Tables:

$$
\begin{array}{c|ccc}
c_{1} & a_{11} & \cdots & a_{1 s} \\
\vdots & \vdots & & \vdots \\
c_{s} & a_{s 1} & \cdots & a_{s s} \\
\hline & b_{1} & \cdots & b_{s}
\end{array}
$$

Order Conditions

For a method to have order $p=1$ we need:

$$
\sum_{i=1}^{s} b_{i}=1
$$

For a method to have order $p=2$, it must satisfy order $p=1$ and:

$$
\sum_{i=1}^{s} b_{i} c_{i}=\frac{1}{2}
$$

For a method to have order $p=3$ it must satisfy $p=2$ and:

$$
\sum_{i=1}^{s} b_{i} c_{i}^{2}=\frac{1}{3}, \quad \sum_{i=1}^{s} \sum_{j=1}^{s} b_{i} a_{i j} c_{j}=\frac{1}{6}
$$

Equilibrium points

Equilibrium Points: is a point of $\frac{d y}{d t}=f(y)$ for which $f\left(y^{*}\right)=0$.
An equilibrium point of the ODE corresponds to a fixed point of the flow map. A point $y^{*} \in \mathbb{R}^{d}$ such that

$$
\phi_{t}\left(y^{*}\right)=y^{*}, \forall t>0
$$

Asymptotically Stable: if

- y^{*} is stable
- Solutions started sufficiently near to y^{*} tend to y^{*} as $t \rightarrow \infty$

Theorem 4.3.2: Suppose $f(y)=\frac{d y}{d t}$ is C^{2} and has an equilibrium point y^{*}. If the eigenvalues of $J=f^{\prime}\left(y^{*}\right)$ all lie strictly in the left complex half-plane, then the equilibirum point y^{*} is asymptotically stable. If J has any e-val in the right complex half plane then y^{*} is an unstable point.
Dahlquist Test Equation: $y^{\prime}=\lambda y, \quad \lambda \in \mathbb{C}$

- Has complex valued solution $y(t)=e^{\lambda t} y_{0}$
- Equilibrium point $y^{*}=0$
- Asymptotically stable if $\operatorname{Re}(\lambda)<0$

Stability Function: $y_{n+1}=R(h \lambda) y_{n}$
$R(\mu)=1+\mu b^{T}(I-\mu A)^{-1} \mathbf{1}$

- Euler: $R(h \lambda)=1+h \lambda$

The fixed point $y^{*}=0$ is asymptotically stable if when we start near zero, we tend to it, i.e $|1+h \lambda|<1$

- Implicit Euler: $R(h \lambda)=(1-h \lambda)^{-1}$
- Trapezium: $R(h \lambda)=\frac{1+h \lambda / 2}{1-h \lambda / 2}$
- Implicit Midpoint: $R(h \lambda)=\frac{1+h \lambda / 2}{1-h \lambda / 2}$

Determine $h \lambda$ such that $|R(h \lambda)| \leq 1$, this is called the region of absolute stability of the numerical method.

Fixed Points

Set of Fixed Points: $\mathcal{F}=\left\{y \in \mathbb{R}^{d}: f(y)=0\right\}$
For a numerical map Ψ_{h}, the fixed point may depend on h as well as f. We denote the set of fixed points Ψ_{h} by $\mathcal{F}_{h}=\left\{y \in \mathbb{R}^{d}: \Psi_{h}(y)=y\right\}$
A-stable: If stability region includes entire left half-plane
L-stable: If A-stable and $R(\mu) \rightarrow 0$ as $\mu \rightarrow \infty$
Thm: Given an RK method with stability function R, then the method is A-stable iff:

- All poles of R lie strictly in the right half plane
- $|R(i t)| \leq 1$ for all $t \in \mathbb{R}$

Linear Multistep Methods

Definition 5.0.1: A linear k-step method is defined as:

$$
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f\left(y_{n+j}\right)
$$

Where $\alpha_{k} \neq 0$ and either $\alpha_{0} \neq 0$ or $\beta_{0} \neq 0$. Usually the coefficients are normalized such that either $\alpha_{k}=1$ or $\sum_{j} \beta_{j}=1$. Order of Accuracy:

$$
\rho(\zeta)=\sum_{j=0}^{k} \alpha_{j} \zeta^{j}, \quad \sigma(\zeta)=\sum_{j=0}^{k} \beta_{j} \zeta^{j}
$$

The θ-method: generalises all linear one-step methods:

$$
y_{n+1}-y_{n}=h(1-\theta) f\left(y_{n}\right)+h \theta f\left(y_{n+1}\right)
$$

Residual: The residual of a linear multistep method at time t_{n+k} :

$$
r_{n}:=\sum_{j=0}^{k} \alpha_{j} y\left(t_{n+j}\right)-h \sum_{j=0}^{k} \beta_{j} y^{\prime}\left(t_{n+j}\right)
$$

Consistency: Equivalent conditions for a linear multistep method to have order of consistency p are:

- The coefficients α_{j} and β_{j} satisfy

$$
\sum_{j=0}^{k} \alpha_{j}=0 \text { and } \sum_{j=0}^{k} \alpha_{j} j^{i}=i \sum_{j=0}^{k} \beta_{j} j^{i-1}
$$

for $\quad i=1, \ldots, p$

- The polynomials $\rho(\zeta)$ and $\sigma(\zeta)$ satisfy:

$$
\rho\left(e^{z}\right)-z \sigma\left(e^{z}\right)=\mathcal{O}\left(z^{p+1}\right)
$$

- The polynomials $\rho(\zeta)$ and $\sigma(\zeta)$ satisfy:

$$
\frac{\rho(z)}{\log z}-\sigma(z)=\mathcal{O}\left((z-1)^{p}\right)
$$

Root Condition and Zero-Stability

Root Condition: A linear k-step method is said to satisfy the root condition if all roots ζ of $\rho(\zeta)=0$ lie in the unit disc $(|\zeta| \leq 1)$ and any root of modulus one has multiplicity one. Theorem 5.4.1: A multistep method is convergent iff the order is $p \geq 1$ and satisfies the root condition.

Geometric Integration

Definitions

- Abscissa: The distance from a point to the vertical or y -axis, measured parallel to the horizontal or x -axis; the x -coordinate.
- Implicit: The method is defined implicitly by an equation that has to be solved to advance the step (e.g. contains a function that depends on y_{n+1}.
- Explicit: Calculates the state of a system at a later time from a the state of the system at a current time.
- Consistency: A method is consistent of order p if, in a single timestep, the difference between the exact and approximate solutions is $O\left(h^{p+1}\right)$.
- Stability: A method is stable if the difference between numerical solutions grows by a bounded amount as h tends to zero.
- Local Error: error introduced in one step of a numerical method.
- Global Error: $g e=\left|y_{n}-y\left(t_{n}\right)\right|$.

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

- First Order Method: When Euler's method is applied with fixed stepsize on a finite time interval, the norm of the global error is bounded by a constant times the stepsize.
- Local error for Euler's method satisfies: $\mathrm{le}_{n} \leq\left|y^{\prime \prime}\left(t_{n}\right)\right| h^{2} / 2$
- Liouvilles Theorem: Flow maps of divergence free systems are volume preserving.

