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Introduction

Numerical Methods

Eulers Method:

yn+1 = yn + hf(tn, yn)

Convergence of Euler’s Method∣∣∣∣∂f∂y
∣∣∣∣ ≤ L

L ≤ max
(t,y)∈R

∣∣∣∣∂f∂y
∣∣∣∣∣∣y′′(t)∣∣ ≤M, a ≤ t ≤ b

D = e(b−a)L
M

2L

and with en = yn − y(tn) we have the global error is bounded
by Dh in magnitude: |en| ≤ Dh ,for n = 0, 1, ..., N .

The Flow Map

Flow Map: fixing t0 and h we may consider the map from y0
to y(t0 + h; to, y0). This is the flow map, written:

y(t0 + h; t0, y0) = Φt0,h(y0)

Which is actually a family of maps.
Flow Map Approximation: can be viewing of the form:

Φ̂t,h(y) = y + hf(t, y)

Methods which approximate the solution through iteration of
an approximate flow map are called one-step methods.

Taylor Series Methods

y′ = f(t, y)

y′′ = fyy
′ + ft = fyf + ft

Thus

Φt,h(y) = y+hf(t, y)+
1

2
h2 (fy(t, y)f(t, y) + ft(t, y))+

1

6
y′′′h3+. . .

Convergence of One-Step Methods

Polynomial Interpolation

The Lagrange interpolating polynomials `i, i = 1, . . . , s for a
set of abscissae are defined by:

`i(x) =

s∏
j=1
j 6=i

x− cj
ci − cj

Defining the weights:

bi =

∫ 1

0

`i(x)dx

The quadrature formula becomes:∫ 1

0

g(x)dx ≈
∫ 1

0

P (x)dx =

s∑
i=1

big (ci)

Runge-Kutta Methods

Yi = yn + h

s∑
j=1

aijf (Yj) , i = 1, . . . , s

yn+1 = yn + h

s∑
i=1

bif (Yi)

Here, s is the number of stages of the RK method, bi are the
weights and aij are the internal coefficients.
Butcher Tables:

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass
b1 · · · bs

Order Conditions

For a method to have order p = 1 we need:

s∑
i=1

bi = 1

For a method to have order p = 2, it must satisfy order p = 1
and:

s∑
i=1

bici =
1

2

For a method to have order p = 3 it must satisfy p = 2 and:

s∑
i=1

bic
2
i =

1

3
,

s∑
i=1

s∑
j=1

biaijcj =
1

6

Equilibrium points

Equilibrium Points: is a point of dy
dt

= f(y) for which
f(y∗) = 0.
An equilibrium point of the ODE corresponds to a fixed point
of the flow map. A point y∗ ∈ Rd such that

φt(y
∗) = y∗, ∀t > 0

Asymptotically Stable: if

• y∗ is stable

• Solutions started sufficiently near to y∗ tend to y∗ as
t→∞

Theorem 4.3.2: Suppose f(y) = dy
dt

is C2 and has an equilib-
rium point y∗. If the eigenvalues of J = f ′(y∗) all lie strictly
in the left complex half-plane, then the equilibirum point y∗ is
asymptotically stable. If J has any e-val in the right complex
half plane then y∗ is an unstable point.

Dahlquist Test Equation: y′ = λy, λ ∈ C

• Has complex valued solution y(t) = eλty0

• Equilibrium point y∗ = 0

• Asymptotically stable if Re(λ) < 0

Stability Function: yn+1 = R(hλ)yn
R(µ) = 1 + µbT (I − µA)−11

• Euler: R(hλ) = 1 + hλ
The fixed point y∗ = 0 is asymptotically stable if when
we start near zero, we tend to it, i.e
|1 + hλ| < 1

• Implicit Euler: R(hλ) = (1− hλ)−1

• Trapezium: R(hλ) = 1+hλ/2
1−hλ/2

• Implicit Midpoint: R(hλ) = 1+hλ/2
1−hλ/2

Determine hλ such that |R(hλ)| ≤ 1, this is called the region
of absolute stability of the numerical method.
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Fixed Points

Set of Fixed Points: F = {y ∈ Rd : f(y) = 0}
For a numerical map Ψh, the fixed point may depend on
h as well as f . We denote the set of fixed points Ψh by
Fh = {y ∈ Rd : Ψh(y) = y}
A-stable: If stability region includes entire left half-plane
L-stable: If A-stable and R(µ)→ 0 as µ→∞
Thm: Given an RK method with stability function R, then
the method is A-stable iff:

• All poles of R lie strictly in the right half plane

• |R(it)| ≤ 1 for all t ∈ R

Linear Multistep Methods

Definition 5.0.1: A linear k-step method is defined as:

k∑
j=0

αjyn+j = h

k∑
j=0

βjf (yn+j)

Where αk 6= 0 and either α0 6= 0 or β0 6= 0. Usually the coeffi-
cients are normalized such that either αk = 1 or

∑
j βj = 1.

Order of Accuracy:

ρ(ζ) =

k∑
j=0

αjζ
j , σ(ζ) =

k∑
j=0

βjζ
j

The θ-method: generalises all linear one-step methods:

yn+1 − yn = h(1− θ)f(yn) + hθf(yn+1)

Residual: The residual of a linear multistep method at time
tn+k:

rn :=

k∑
j=0

αjy (tn+j)− h
k∑
j=0

βjy
′ (tn+j)

Consistency: Equivalent conditions for a linear multistep
method to have order of consistency p are:

• The coefficients αj and βj satisfy

k∑
j=0

αj = 0 and

k∑
j=0

αjj
i = i

k∑
j=0

βjj
i−1

for i = 1, . . . , p

• The polynomials ρ(ζ) and σ(ζ) satisfy:

ρ (ez)− zσ (ez) = O
(
zp+1)

• The polynomials ρ(ζ) and σ(ζ) satisfy:

ρ(z)

log z
− σ(z) = O ((z − 1)p)

Root Condition and Zero-Stability

Root Condition: A linear k-step method is said to satisfy
the root condition if all roots ζ of ρ(ζ) = 0 lie in the unit disc
(|ζ| ≤ 1) and any root of modulus one has multiplicity one.
Theorem 5.4.1: A multistep method is convergent iff the
order is p ≥ 1 and satisfies the root condition.

Geometric Integration

Definitions

• Abscissa: The distance from a point to the vertical or
y -axis, measured parallel to the horizontal or x -axis;
the x -coordinate.

• Implicit: The method is defined implicitly by an equa-
tion that has to be solved to advance the step (e.g. con-
tains a function that depends on yn+1.

• Explicit: Calculates the state of a system at a later
time from a the state of the system at a current time.

• Consistency: A method is consistent of order p if, in
a single timestep, the difference between the exact and
approximate solutions is O(hp+1).

• Stability: A method is stable if the difference between
numerical solutions grows by a bounded amount as h
tends to zero.

• Local Error: error introduced in one step of a numeri-
cal method.

• Global Error: ge = |yn − y(tn)|.

•

ex =

∞∑
n=0

xn

n!

• First Order Method: When Euler’s method is applied
with fixed stepsize on a finite time interval, the norm of
the global error is bounded by a constant times the step-
size.

• Local error for Euler’s method satisfies:
len ≤ |y′′(tn)|h2/2

• Liouvilles Theorem: Flow maps of divergence free sys-
tems are volume preserving.
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